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The supersymetric path integrals in solving the problem of relativistic spinning par-
ticle interacting with pseudoscalar potentials is examined. The relative propagator is
presented by means of path integral, where the spin degrees of freedom are described
by odd Grassmannian variables and the gauge invariant part of the effective action has
a form similar to the standard pseudoclassical action given by Berezin and Marinov.
After integrating over fermionic variables (Grassmannian variables), the problem is re-
duced to a nonrelativistic one with an effective supersymetric potential. Some explicit
examples are considered, where we have extracted the energy spectrum of the electron
and the wave functions.

PACS numbers: 03.65. Ca-Formalism, 03.65. Db-Functional analytical methods,
03.65. Pm-Relativistic wave equations.

1. INTRODUCTION

In relativistic quantum mechanics the Klein Gordon and Dirac equations can
be considered as first approximation of the field theory when the corrections are
perceptible only in the presence of strong fields (Gross, 1993; Bjorken and Drell,
1965; Greiner, 1990). What explains the increased interest of these equations and
particularly the importance to find their exact and analytic solutions preferably
handier than what exists (Bagrov and Gitman, 1990). It is obvious that such so-
lutions allow a better description and analysis of certain physical phenomena.
However, in order to satisfy this deep need of comprehension, the quantum me-
chanics was reformulated according to other approaches such as the path integral
(Feynman and Hibbs, 1965) that remains currently a useful quantization method.

For the Dirac equation which is a fundamental equation in physics, the path
integral formulation has n’t known the same development, mainly because of the
difficulty of inserting the anticommuting γ -matrices by means of paths. However, a
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successful formulation for relativistic spinning particles was elaborated by Fradkin
and Gitman 1991 according to the Feynman standard form∫

D (path) exp iS(path), (1)

where S is a supersymetric action which describes at the same time the external
motion and internal one related to the spin of the particle. Elsewhere, the same
problem is reconsidered following the so-called global and local representations
by Alexandrou et al., 1998.

Recently, the problem of a relativistic spinning particle interacting with vector
and scalar potentials and pseudoscalar potential has been widely discussed (Vil-
lalba, 1995, 1997) (see also (Alhaidari et al., 2006) and references therein.). The
authors have written the (1 + 1) dimensional Dirac equation in the more general
form (de Castro, 2003; Sinha and Roy, 2005)

i
∂

∂t
ψ = [αP + βm + V (x)] ψ, (2)

where the potential V (x) has the following Lorentz structure

V (x) = V0 (x) + αV1 (x) + βVs (x) + βγ 5Vp (x) . (3)

The pieces V0 (x) and V1 (x) are the two components of Lorentz 2-vector and
Vs (x), Vp (x) stand respectively for the scalar potential and the pseudoscalar one.

For the vector and the scalar potentials the path integral formulation and
the pseudoclassical description have been done straightforwardly (Fradkin and
Gitman, 1991; Alexandrou et al., 1998). However, to our knowledge, there is no
path integral discussion for the pseudoscalar potentials. We mention that the path
integral formulation is derived for the problem of Dirac equation with torsion
field that has some resemblance to but different from the pseudoscalar potential
case (Geyer et al., 2000). The torsion field, which carries the γ 5 matrix, has 4
components and is not a Lorentz pseudoscalar.

Our purpose in this paper is to examine the method of supersymetric path
integrals in studying the relativistic spinning particle subjected to a one dimen-
sional pseudoscalar potential. So, we shall treat analytically by the Feynman
path integrals the problem of a Dirac particle in position-dependent pseudoscalar
interaction.

In the first stage we give a path integral formulation for the propagator that
we suggest to calculate according to the global projection and we describe the
spin degrees of freedom by odd Grassmannian variables. In second way, we show,
after integrating over odd trajectories, that the relative Green’s function can be
expressed only through bosonic path integrals. The problem will be then reduced
to the propagator of Schrödinger particle in an effective supersymetric potential.
Finally, we consider some particular examples.
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2. FORMULATION OF THE PROBLEM

The path integral formulation elaborated by Fradkin and Gitman 1991 to
determine the Green’s function solution of

[γ µ(Pµ − eAµ) − m]Sc(xb, xa) = −δ(xb − xa) (4)

consists in making the operator [γ µ(Pµ − eAµ) − m] homogeneous in γ -
matrices by multiplying it by γ 5(γ 5 = γ 0γ 1γ 2γ 3) and defining new γ̃ -
matrices; γ̃ µ = γ 5γ µ, γ̃ 5 = γ 5, which obey [γ̃ m, γ̃ n]+ = ηmn, with ηmn =
diag(1,−1,−1,−1,−1) and m, n = 0, 3, 5. Since these matrices are considered
as Fermi-type operators, the homogeneous operator F̃ ≡ [γ̃ µ(Pµ − eAµ) − γ̃ 5m]
is a pure Fermi operator and its square F̃ 2 is a Bose-type operator that can be
represented by Schwinger proper time representation. Therefore, the propagator
takes an exponential form

Sc(xb, xa)γ 5 =
∫

dλ

∫
〈xb| exp i[λF̃ 2 + χF̃ ]|xa〉dχ, (5)

where χ is an odd Grassmannian variable anticommuting with γ̃ -matrices. This
representation leads to a supersymetric action path integral form (Berezin and
Marinov, 1975, 1977; Brink et al., 1976, 1977).

Besides, we notice that this representation is generalized to the case of arbi-
trary dimensions in Gitman (1997) and it is shown that in odd dimensions (2d + 1)
the matrix γ 5 does not exist and consequently the procedure of making Dirac op-
erator homogeneous in γ -matrices does not work. However, the path integral
formulation is derived rigorously by using other technic.

For the case of the pseudoscalar interaction in (1 + 1) dimension, there exists
γ 5, but we cannot find homogeneous operator. It is then difficult to build a local
path integral representation. So, we construct a global representation starting from
the causal Green’s function Sc(xb, xa) solution of the equation

[γ µPµ − γ 5Vp(x1) − m]Sc(xb, xa) = −δ2( xb − xa), (6)

where x ≡ (x0, x1) and x1 is the position coordinate. The γ -matrices are given, in
(1 + 1) dimension, in terms of Pauli matrices

γ 0 = σz, γ 1 = iσy, γ 5 = iγ 0γ 1 = iσx. (7)

Then, we present Sc(xb, xa) as a matrix element of an operator S
c

Sc(xb, xa) = 〈xb|Sc|xa〉, (8)

where

S
c = 1

K−
= K+

1

K−K+
(9)
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and the operators K− and K+ are given by

K± = [γ µPµ − γ 5Vp(x1) ± m]. (10)

This procedure is used in Alexandrou et al. (1998) to derive path integral rep-
resentation for the propagator systematically without the usual five-dimensional
extension (i.e. without γ 5) and it is employed also in Gitman (1997) in the case of
odd dimensions where there is no γ 5 matrix. However, in the present case, despite
of the existing of γ 5, we must use this procedure to obtain a Bose-type operator
that has a quadratic form with respect to γ -matrices.

The product K−K+ is then

K−K+ = P 2 − m2 − V 2
p (x1) + i

1

2
Fmnγ

mγ n (11)

where the antisymmetric tensor Fmn, that has to be understood as a matrix with
lines marked by the first contravariant indices and with columns marked by the
second covariant indices, is given by

Fmn = fmn

∂

∂x1
Vp(x1), (12)

with

f =
⎛
⎝ 0 0 0

0 0 −1
0 1 0

⎞
⎠ . (13)

In this connection, we notice that for the general case, where Vp (x) is position-
and time-dependent potential, the antisymmetric tensor Fmn will be given by

F51 = −F15 = ∂

∂x1
Vp(x),

F50 = −F05 = ∂

∂x0
Vp(x), (14)

F01 = F10 = 0,

however, as it is mentioned in the introduction we interest only to the significant
case of the space-dependent potential.

Now, in order to build a global representation we use the relation∫
dx2|x〉〈x| = 1. We get

Sc(xb, xa) =
[
iγ µ ∂

∂x
µ

b

− γ 5Vp

(
x1

b

) + m

]
Gc(xb, xa). (15)

Here the operator [iγ µ∂µ − γ 5Vp(x1) + m] will eliminate the superfluous states
caused by the product K−K+ in (9) and the Green’s function Gc(xb, xa), that we
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suggest to calculate via path integration, has the following proper time represen-
tation

Gc(xb, xa) = i

∫
dλ〈xb| exp(−iH(λ))|xa〉, (16)

where

H(λ) = λ

(
−P 2 + m2 + V 2

p (x1) − i

2
Fmnγ

mγ n

)
. (17)

To present Gc(xb, xa) by means of a path integral we write, in the beginning,
exp(−iH(λ)) = [exp(−iH(λ)ε)]N , with ε = 1/N , and we insert (N − 1) identi-
ties

∫ |x〉〈x|dx = 1 between all the operators exp(−iεH(λ)). Next, we introduce
N integrations

∫
dλkδ(λk − λk−1) = 1. We then obtain

Gc = i lim
N→∞
ε→0

∫
dλ0

∫
dx1dx2 . . . dxN−1

∫
dλ1dλ2 . . . dλN

×
N∏

k=1

〈xk| exp (−iεH (λk)) |xk−1〉 δ (λk − λk−1) . (18)

As ε is small, we can write

〈xk| exp (−iεH (λk)) |xk−1〉 ≈ 〈xk| 1 − iεH (λk) |xk−1〉 (19)

and, as H(λ) has no product of the operators X, P , using the relation∫ |pk〉 〈pk| dpk = 1 and taking into account that

〈xk | pk′ 〉 = 1

2π
eipk′xk , (20)

the matrix element (19) can be expressed in the middle point x̃k = (xk + xk−1)/2
∫

dpk

(2π )2 exp

{
i

[
pk

xk − xk−1

ε
− H (λk, x̃k, pk)

]
ε

}
. (21)

The multipliers in (18) are noncommutative due to the γ -matrices structure so
that we attribute formally the index k, to γ -matrices, and we introduce the
T-product which acts on γ -matrices. Then, using the integral representation for
the δ-functions

δ (λk − λk−1) = i

2π

∫
eiπk (λk−λk−1)dπk, (22)
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it becomes possible to gather all the multipliers, entering in (18), in one exponent
and the Green’s function Gc can be expressed as follows

Gc = T

∫ ∞

0
dλ0

∫
Dx

∫
Dp

∫
Dλ

∫
Dπ

× exp

{
i

∫ 1

0
dτ

[
λ

(
p2 − m2 − V 2

p (x1)
) + pẋ + πλ̇

+ λ
i

2
Fmnγ

mγ n

]}
. (23)

In order to insert the γ -matrices by means of path integrals we introduce an odd
source ρµ. We obtain

Gc = T

∫ ∞

0
dλ0

∫
Dx

∫
Dp

∫
Dλ

∫
Dπ

× exp

{
i

∫ 1

0
dτ

[
λ

(
p2 − m2 − V 2

p (x1)
) + pẋ + πλ̇

+ λ
i

2
Fmn

δ�

δρm

δ�

δρn

]}
T exp

∫ 1

0
ρ(τ )γ dτ

∣∣∣∣
ρ=0

. (24)

Next, we present the quantity T exp
∫ 1

0 ρ(τ )γ dτ via a path integral over grass-
mannian odd trajectories (Fradkin and Gitman, 1991; Alexandrou et al., 1998)

T exp
∫ 1

0
ρ(τ )γ dτ = exp

(
iγ n ∂l

∂θn

) ∫
ψ(0)+ψ(1)=θ

Dψ

× exp

{∫ 1

0
dτ [ψnψ̇

n − 2i ρnψ
n] + ψn(1)ψn(0)

}
, (25)

where the measure Dψ is given by

Dψ = Dψ

[∫
ψ(0)+ψ(1)=0

Dψ exp

{∫ 1

0
ψnψ̇

ndτ

}]−1

(26)

and θn and ψn are odd variables, anticommuting with γ -matrices.
Finally, the Green’s function Gc will be presented in the Hamiltonian path

integral representation as follows:

Gc = exp

(
iγ n ∂l

∂θn

) ∫ ∞

0
dλ0

∫
Dx

∫
Dp

∫
Dλ

∫
Dπ

∫
ψ(0)+ψ(1)=θ

Dψ

× exp

{
i

∫ 1

0
dτ

[
λ

(
p2 − m2 − V 2

p (x1) + 2iFmnψ
mψn

)

− iψnψ̇
n + pẋ + πλ̇

] + ψn(1)ψn (0)
}∣∣

θ=0 . (27)
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We notice that, integrating over momenta and separating the gauge-fixing term
πλ̇ and the boundary term ψn(1)ψn(0) we obtain the super-gauge invariant action

A =
∫ 1

0

[
− ẋ2

4λ
− λV 2

p (x1) − iψnψ̇
n + 2iλFmnψ

mψn

]
dτ, (28)

which resembles to Berezin-Marinov action (Berezin and Marinov, 1975, 1977).

3. THE GREEN’S FUNCTION

Having shown how to formulate the problem of Dirac particle interacting
with a pseudoscalar potential in the framework of Feynman-Beresin path integral,
let us do integration over fermionic variables to express the Green’s function only
via bosonic path integrals. To begin, let us integrate over π and λ;

Gc = exp

(
iγ n ∂l

∂θn

) ∫ ∞

0
dλ

∫
Dx

∫
Dp

∫
ψ(0)+ψ(1)=θ

Dψ

× exp

{
i

∫ 1

0
dτ

[
λ

(
p2 − m2 − V 2

p (x) + 2iFmnψ
mψn

)

− iψnψ̇
n + pẋ

] + ψn(1)ψn(0)
}∣∣

θ=0 . (29)

Then, we integrate over p1, p0 and x0 (x0 ≡ t) to obtain

Gc =
∫

dE

2π
eiE(tb−ta )GE, (30)

where the fixed energy Green’s function GE is given as follows

GE = exp

(
iγ n ∂l

∂θn

)∫ ∞

0
dλ eiλ(E2−m2)

∫
Dx1

× exp

{
i

∫ 1

0
dτ

[(
ẋ1

)2

4λ
− λV 2

p (x1)

]}
I(x1, λ, θ )

∣∣∣∣∣
θ=0

(31)

and the factor I
(
x1, λ, θ

)
is given by

I(x1, λ, θ ) =
∫

ψ(0)+ψ(1)=θ

Dψ

× exp

{∫ 1

0
dτ [ψnψ̇

n − 2λFmnψ
mψn] + ψn(1)ψn(0)

}
. (32)

In order to calculate I
(
x1, λ, θ

)
we change, in the first stage, the integration

variables from ψ to ξ , where

ψ = 1

2
ξ + θ

2
, (33)
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and the new variables ξ obey the following boundary condition

ξ (0) + ξ (1) = 0. (34)

Next, we change the proper time from τ to σ , where

dσ = V ′
p(x1)dτ. (35)

The factor I(x1, λ, θ ) will be given then through the Grassmann Gaussian integral

I(x1, λ, θ ) = exp

(
− λ̃

2
fnm θnθm

) ∫
Dξ

× exp

{∫ 1

0

[
1

4
ξnξ̇

n − λ̃fnm ξnξm − 2λ̃fnmθnξm

]
dσ

}∣∣∣∣
θ=0

, (36)

where

λ̃ = λ

∫ 1

0
V ′

p(x1)dτ. (37)

Since fnm is constant,I(x1, λ, θ ) has the same form as the spinor part of propagator
corresponding to the problem of the constant electromagnetic field. It can be then
evaluated to be

I(x1, λ, θ ) = det
1
2 (cosh λ̃f )(1 − Bnmθnθm), (38)

where the tensor B is given by (see (Gitman et al. 1996, 1997))

B = 1

2
tanh

(
λ̃f

)
(39)

From the definition of the tensor fnm, it is easy to show that

cosh
(
λ̃f

) = 1 + f 2
(
1 − cos λ̃

)
(40)

and

B = 1

2
f tan λ̃. (41)

So, the fermionic part of the propagator is calculable

exp

(
iγ n ∂l

∂θn

)
I(x1, λ, θ )

∣∣∣∣
θ=0

=
∑
s=±1

1 + sγ 0

2
exp

(
iλs

∫ 1

0
V ′

p(x1)dτ

)
(42)

and the Green’s function GE can be expressed only through bosonic path integral
over space coordinate x1. It is given by

GE =
∑
s=±1

1 + sγ 0

2
Ps

(
x1

b , x
1
a

)
, (43)



1536 Haouat and Chetouani

where

Ps(x
1
b , x

1
a ) =

∫ ∞

0
dλeiλ(E2−m2)

×
∫

Dx1 exp

{
i

∫ λ

0
dτ

[(
ẋ1

)2

4
− Us(x

1)

]}
, (44)

and the effective potential Us(x1) has a supersymetric form

Us(x
1) = V 2

p (x1) − sV ′
p(x1). (45)

Thus, the problem of fermion interacting with a pseudoscalar potential becomes
soluble in condition the effective potential is solvable in non relativistic case. Let us
assume that Ps(x1

b , x
1
a ) is integrable and has the following spectral decomposition

Ps

(
x1

b , x
1
a

) =
∫ ∞

0
dλeiλ(E2−m2)

∑
n

e−iλEnφn

(
x1

b

)
φ∗

n

(
x1

a

)
(46)

where En is the energy of non relativistic problem. Then by writing the matrix
1
2 (1 + sγ 0) as a product of a spinor U and it’s conjugate Ū

1 + sγ 0

2
= UsŪs, (47)

with

Us=−1 =
(

0
1

)
, Us=+1 =

(
1
0

)
. (48)

and by integration over λ, we get

GE =
∑
n,s

UsŪs

φn

(
x1

b

)
φ∗

n

(
x1

a

)
E2 − E2

n

(49)

with

E2
n = m2 + En. (50)

Integrating once again over E, we obtain

Gc(xb, xa) =
∑
ε=±1

∑
s=±1

∞∑
n=0

� [ε (tb − ta)] ϕε
n,s (xb) ϕ̄ε

n,s (xa) (51)

where � (�t) is the Heaviside step function and the spinors ϕε
n,s (x), which are

given by

ϕε
n,s (x) = e−iεEntφn(x1)Us, (52)
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are solutions of the quadratic form of Dirac equation (due to the product K−K+).
To obtain Dirac spinors solution of the problem in question we eliminate the
superfluous states by acting the operator K+(x) on the spinors ϕε

n,s(x)

ψn,s(t, x) = Nn,s

[
iγ µ ∂

∂xµ
− γ 5Vp(x1) + m

]
ϕε

n,s(x), (53)

where Nn,s is a normalization constant. One can find

ψn,s=+1 (x) = Nn,+1e
−iεEnt

(
En + m

i ∂
∂x1 − iVp(x1)

)
φn(x1), (54)

and

ψn,s=−1 (x) = Nn,−1e
−iεEnt

(−i ∂
∂x1 − iVp(x1)
−En + m

)
φn(x1). (55)

So, for any pseudoscalar potential, it is sufficient to calculate the path integral
presented in (44) and to determine the energy spectrum En and the corresponding
functions φn(x1).

In the next section we give some explicit examples.

4. EXAMPLES

4.1. The Linear Potential (A Relativistic Oscillator)

Let us, first, consider the simpler case of the linear pseudoscalar potential

Vp(x1) = mωx1, (56)

which describes a relativistic oscillator. The corresponding supersymetric potential
has the same form as the usual harmonic oscillator plus a constant term

Us(x
1) = m2ω2(x1)2 − smω (57)

and the relative kernel

Ps

(
x1

b , x
1
a

) =
∫ ∞

0
dT eiT (E2−m2+smω)

×
∫

Dx1 exp

{
i

∫ T

0
dτ

[(
ẋ1

)2

4
− m2ω2(x1)2

]}
(58)

is then integrable. The functions φn(x1) are those of the usual Harmonic oscillator

φn(x1) = (
2nn!

√
π

)− 1
2 (mω)

1
4 e− mω

2 (x1)2

Hn(
√

mωx1) (59)

and the energy spectrum is given by

E2
n = m2 + (2n + 1 − s) mω. (60)
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4.2. The Modified Pöschl-Teller Potential

The second example that we give in this section is the potential

Vp(x1) = V0 tanh x1 − V1

sinh 2x1
(61)

which leads to the modified Pöschl-Teller potential

Us(x
1) = V 2

0 + l2 − 1
4

sinh2 x1
− k2 − 1

4

cosh2 x1
(62)

with

l = V1

2
− s

2

k = V0 + V1

2
+ s

2
. (63)

The corresponding path integral

Ps

(
x1

b , x
1
a

) =
∫ ∞

0
dλeiλ(E2−m2−V 2

0 )

×
∫

Dx1 exp

{
i

∫ λ

0
dτ

[(
ẋ1

)2

4
−

(
l2 − 1

4

sinh2 x1
− k2 − 1

4

cosh2 x1

)]}
,

(64)

is also integrable. We have (Grosche, 1993)

φn(x1) = N
(
sinh x1

)k+1/2 (
cosh x1

)n−l+1/2

× 2F1
(−n, k − n, l + 1; tanh2 x1

)
, (65)

where

N = 1

� (k + 1)

[
2 (l − k − 2n − 1) � (l − n) � (1 + n + k)

� (l − k − n) n!

]1/2

, (66)

and

E2
n = m2 + V 2

0 −
(

2n − V0 + V1

2
+ 1 − s

)2

. (67)

We remark here that we can obtain the Pöschl-Teller potential

Us(x
1) = l2 − 1

4

sin 2x1
− k2 − 1

4

cos 2x1
(68)
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from the pseudoscalar one

Vp(x1) = V0 tan x1 − V1

sin 2x1
, (69)

however, we are not going to show details.

4.3. The Scarf II Potential

Another important example is the complex potential

Vp(x1) = (p + q) tanh x1 − i
(p − q)

cosh x1
. (70)

The supersymetric potential Us(x1) will be given by

Us(x
1) = α − β + β tanh2 x1 + γ

sinh x

cosh2 x1
, (71)

where

α = (p + q)2

β = −2(p2 + q2) − s(p + q) (72)

γ = −i(p − q)[2(p + q) + s].

In this case, the relative Hamiltonian is pseudo-hermitian (H † = ηHη−1, where
η may be the parity operator) and consequently the norm (pseudo-norm) is given,
for scalar functions, by the integral (see Sinha and Roy, 2005 and references
therein)

∫
ψ (x) ψ∗ (−x) dx. (73)

Since the path integral representation for the Kernel Ps

(
x1

b , x
1
a

)
has a complex

action it is convenient to use a Duru-Kleinert transformation (Kleinert, 1990),
where the path x will be replaced by y, with

x1 = h(y) (74)

and the proper time λ by T , where

dτ = f (x1)dσ. (75)

Note that the introduction of the function f (x1) in the Feynman propagator has
brought the kinetic term to an inconvenient form containing a space dependant



1540 Haouat and Chetouani

mass. By taking the following transformation

sinh x1 = −i tanh y

cosh x1 = 1

cosh y
(76)

and by setting

f
(
x1 (y)

) = −1

cosh2 y
(77)

the problem is solved. The discrete spectrum is given by the formula

E2
n,s = m2 −

(
n + 1 − s

2

)2

− 2 (p + q)

(
n + 1 − s

2

)
(78)

and the pseudo-normalized φn(x1) are given in terms of Jacobi Polynomials

φn (x) = N

(
1 − i sinh x1

2

)−(q+ s−1
4 ) (

1 + i sinh x1

2

)−(p+ s−1
4 )

P
(−2p− s

2 ,−2q− s
2 )

n

(
i sinh x1

)
, (79)

where

N =
√

[2n − 2 (p + q + s − 1)] �
(
n + 1 − (

p + q + s
2

))
n!

�
(
n + 1 − (

2p + s
2

))
�

(
n + 1 − (

2q + s
2

)) . (80)

5. CONCLUSION

In this paper we have solved, by the path integral approach, the problem of
Dirac particle interacting with a pseudoscalar potential in (1 + 1) dimension. The
propagator of the particle is presented by means of supersymetric path integrals
in the so called global projection, where the internal motion relative to the spin of
the fermion is described by odd grassmannian variables. Since the pseudoclassical
action has a more familiar form with respect to ψ-variables, we were able to
express the Green’s function only through bosonic path integrals. The problem
has been reduced to a non relativistic one with a supersymetric potential.

Through the formulation given above and for the explicit examples analyzed
in this paper, we conclude that the supersymetric path integrals are powerful
method to study relativistic one fermion theory.
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